Feuille d'Exercices 13

Espaces vectoriels normés

Normes

Soit E un \mathbb{K} -ev. Une application $N: E \longrightarrow \mathbb{R}^+$ est une **norme** ssi sont vérifiées les propriétés :

- $\forall \lambda \in \mathbb{K}, \forall x \in E, N(\lambda x) = |\lambda|N(x)$. (homogénéité)
- $\forall x, y \in E, N(x+y) \le N(x) + N(y)$ (inégalité triangulaire)
- $\forall x \in E, N(x) = 0 \Longrightarrow x = 0.$ (séparation)

Soit $f \in \mathcal{C}^0([0,1], \mathbb{R})$. On définit sur $\mathbb{R}[X]$, $N(P) = \sup |f(x)P(x)|$. CNS pour que N soit norme? Ex 1

Ex 2 Soit E et F
otin E-ev, $\|.\|$ une norme sur F et $f \in \mathcal{L}(E,F)$. Pour $x \in E$, on définit $N(x) = \|f(x)\|$. CNS pour que N soit une norme sur E?

Ex 3 Soit E un \mathbb{K} -ev et $\|.\|_1$, $\|.\|_2$ 2 normes sur E.

- 1) Montrez que si les 2 boules-unité fermées sont égales, les normes sont égales. (On rappelle que $\left\|\frac{x}{\|x\|}\right\| = 1$).
- 2) * Montrez que si les 2 boules-unité ouvertes sont égales, les normes sont égales (Utilisez Q1 et les ε)

Centrale PSI 2022-2011 (normes sur $\mathscr{C}^2([0,1],\mathbb{R}))$ * **Ex 4** Soit $E = \{ f \in \mathscr{C}^2([0,1],\mathbb{R}), f(0) = f'(0) = 0 \}$. Si $f \in E$, on pose $N(f) = \|f + 2f' + f''\|_{\infty}$.

- **1**) Soit $h: t \longrightarrow f(t)e^t$. Montrez, pour tout $t \in [0,1]$, $h(t) = \int_0^t (t-u)h''(u) du$ [2011: Question absente].
- **2**) Montrez que *N* est une norme.
- **3**) Montrez il existe c > 0 tq $\forall f \in E$, $||f||_{\infty} \le cN(f)$. Déterminez le + petit c [2011: Quest. sur + petit absente]

TPE PSI 2015 (norme et boules)

Ex 5 Pour u = (x, y), on pose $N(u) = \sup_{\substack{0 \le t \le 1 \\ \text{or princ que } N \in \mathbb{N}}} |x + ty|$.

- **1)** Montrez que $N(u) = \max(|x|, |x+y|)$, puis que N est une norme.
- 2) Soit B la boule unité de N. Trouvez le plus petit disque euclidien contenant B et le plus grand disque euclidien contenu dans B.
- **3**) Dessinez la boule-unité (pas dans l'oral initial)

Mines-Ponts PSI 2022 (norme de Frobenius matricielle) *

Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose $N(A) = \operatorname{tr}(A^T A)$. Montrez, pour tous $A, B \in \mathcal{M}_n(\mathbb{R})$, $N(AB) \leq N(A)N(B)$

- On se place sur $E = M_n(\mathbb{C})$ **Ex 7**
- **1**) Montrez qu'il n'existe pas de norme vérifiant $\forall M, N \in E \quad ||MN|| = ||NM||$
- **2**) En déduire qu'il n'existe pas de norme sur *E* « *invariante par matrices semblables* ».

Normes Equivalentes

 N_1, N_2 deux normes sur un ev E sont dites équivalentes ssi il existe $\alpha, \beta \in \mathbb{K}$ tq $\forall x \in E, \alpha N_2(x) \leq N_1(x) \leq \beta N_2(x)$

Dimension Finie: Dans un K-ev de dimension *finie*, *toutes* les normes sont équivalentes

Sur $C^1([0,1],\mathbb{R})$, $N(f) = \int_0^1 |f| \quad N'(f) = |f(0)| + \int_0^1 |f'|$.

- 1) & Montrez que ce sont des normes sur E et établir $\forall f \in E$ $N(f) \leq N'(f)$
- **2**) Prouvez que ces normes ne sont pas équivalentes.

Sur le \mathbb{R} -ev E des suites réelles bornées vérifiant $u_0 = 0$, on définit les normes

$$\|u\|_{\infty}=\sup_{n\in\mathbb{N}}\,|u_n|\quad \|u\|_1=\sup_{n\in\mathbb{N}}\,|u_{n+1}-u_n|. \text{ Sont -elles \'equivalentes?}$$

CCINP PSI 2021 (normes équivalentes sur espaces de fonctions) $\mathbb{E}_{\mathbb{R}}$ On note $E = \{ f \in \mathscr{C}^1 [0,1], f(0) = 0 \}$. On pose, pour $f \in E$, $N(f) = \|f\|_{\infty} + \|f'\|_{\infty}$ et $N'(f) = \|f\|_{\infty} + \|f'\|_{\infty}$ $||f+f'||_{\infty}$.

- **1**) Montrez N et N' sont des normes sur E.
- **2**) Etablir, pour tout $x \in [0,1]$, $e^x f(x) = \int_0^x e^t (f(t) + f'(t)) dt$.
- **3**) Montrez il existe deux réels α, β tq $\forall f \in E, \alpha N'(f) \leq N(f) \leq \beta N'(f)$.

CCP BQMP 2022->2021-2011 (équivalence de normes sur les polynômes) \mathbb{E} Ex 11 On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

Pour $P = \sum_{i=0}^{n} a_i X^i$, n désignant le degré de P, on pose $N_1(P) = \sum_{i=0}^{n} |a_i|$ $N_{\infty}(P) = \sup_{0 \le i \le n} |a_i|$.

1) Démontrez que N_{∞} norme sur $\mathbb{R}[X]$. On admet N_1 norme. [2011: N_1 aussi et montrez succinctement].

- **2**) Démontrez que tout ouvert pour la norme N_{∞} est un ouvert pour la norme $N_{\rm L}$.
- **3**) Démontrez que N_1 et N_{∞} ne sont pas équivalentes.
- **4**) On note $\mathbb{R}_k[X]$ le sous-ev de $\mathbb{R}[X]$ constitué par les polynômes de degré inférieur ou égal à k. On note N_1' $(\text{rp. }N_{\infty}')$ la restriction de N_1 $(\text{rp. }N_{\infty})$ à $\mathbb{R}_k[X]$. Les normes N_1' et N_{∞}' sont-elles équivalentes?

Mines-Ponts PSI 2009
$$\bigstar$$

Ex 12 Soit $E = \mathbb{C}[X]$. Si $a = (a_n) \in \mathbb{R}^{\mathbb{N}}$ et $P = \sum_{k=0}^{+\infty} p_k X^k \in \mathbb{C}[X]$. On pose $N_a(P) = \sum_{k=0}^{+\infty} a_k |p_k|$

- **1**) CNS sur a pour N_a soit une norme sur E.
- **2**) Soient $a, b \in (\mathbb{R}^{+*})^{\mathbb{N}}$. Donnez une CNS pour que N_a et N_b soient \tilde{A} ©quivalentes.
- **3**) Donnez une CNS sur $a \in (\mathbb{R}^{+*})^{\mathbb{N}}$, pour que $D: P \to P'$ soit continue.

Mines-Ponts PSI 2023-2022 (convergence suite de polynômes) * Ex 13 Soient $a \in \mathbb{R}$ et, pour $P \in \mathbb{R}[X]$, $N_a(P) = |P(a)| + |P'|_{\infty[0,1]}$, et E un \mathbb{R} -ev muni de 2 normes N_1 et N_2

- **1**) On suppose N_1 et N_2 équivalentes et (u_n) une suite de E qui converge pour N_1 . Montrez que (u_n) converge pour N_2 .
- **2)** On suppose qu'une suite (u_n) cvg dans (E, N_1) ssi elle cvg dans (E, N_2) . Montrez N_1 et N_2 équivalentes **2022 :** Quest. absente
- **3**) Montrez N_a norme sur $\mathbb{R}[X]$.
- **4**) Soient $a, b \in [0, 1]$. Montrez N_a et N_b normes équivalentes.
- **5**) Pour quelles valeurs de a, la suite des $P_n = \left(\frac{x}{2}\right)^n$ est-elle convergente pour N_a ?
- **6**) En déduire que N_a et N_b ne sont pas équivalentes si $0 \le a < b$ et b > 1. [2022: Quest. absente]

Suites de Matrices / Polynômes / Vecteurs

Soit $(E, \|.\|)$ un evn. On dit qu'une suite de vecteurs (M_n) converge ssi il existe $M \in E$ tel que $\|M_n - M\| \longrightarrow 0$

- Si $M_n \longrightarrow M$, $||M_n|| \longrightarrow ||M||$ $||M_n|| \longrightarrow 0 \Longleftrightarrow M_n \longrightarrow 0$. (réciproque fausse sauf M = 0)
- Si $||M_n|| \longrightarrow +\infty$, la suite (M_n) diverge

Suites-Coordonnées: Soit E un ev de dimension finie et (e_1, \ldots, e_p) une base. Soit M_n une suite de vecteurs de E et $M_n = u_{1n}e_1 + \cdots + u_{pn}e_p$. Alors la suite M_n) converge ssi chaque suite-coordonnée réelle $(u_{kn})_n$) converge, et alors $\lim M_n = \lim u_{1n} e_1 + \dots + \lim u_{pn} e_p$

- **Ex 14** Soit $A \in E = M_n(\mathbb{C})$ tq $\lim A^n = P$. Montrez que P est une (matrice de) projection.
- **Ex 15** Soit (A_n) une suite de matrices inversibles tq $A_n \to A$ et $A_n^{-1} \to B$. Etablir que A est inversible.

Sur $\mathbb{R}[X]$, on définit N_1 et N_2 par $N_1(P) = \sum_{n=0}^{+\infty} |P^{(n)}(0)|$ et $N_2(P) = \sup_{t \in [-1,1]} |P(t)|$

- **1**) Montrez que N_1 et N_2 sont des normes sur $\mathbb{R}[X]$
- **2**) On pose $P_n = \frac{1}{n}X^n$. Etudiez la convergence de la suite (P_n) pour N_1 et N_2 . Qu'en pensez-vous?

Centrale PSI 2021 (suite de matrices diagonalisables) 🖘 💪

- 1) La matrice $T = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ est-elle diagonalisable? Est-elle limite d'une suite de matrices diagonalisables?
- **2**) Soit P de degré n. Montrez P est scindé sur $\mathbb R$ ssi il existe c>0 tq, $\forall z\in\mathbb C,\ \left|P(z)\right|\geq c\left|\operatorname{Im}z\right|^n$.
- **3**) Soit $(A_k)_k$ une suite de matrices diagonalisables sur \mathbb{R} convergeant vers $A \in \mathcal{M}_n(\mathbb{R})$. Montrez χ_A scindé sur

Mines-Ponts PSI 2022 (suite de matrices) ★ 🖘

Ex 18

- **1**) Etudiez la suite (u_n) définie par $u_0 \in \mathbb{R}^{+*}$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2}(u_n + \frac{1}{u_n})$. Soient $p \in \mathbb{N}^*$ et $N \in \mathcal{M}_p(\mathbb{R})$ tq $N^p = 0$. On pose $A = I_p + N$.
- **2**) Montrez A inversible.
- **3**) Justifiez l'existence et étudiez la suite de matrices (M_n) définie par $M_0=A$ et $\forall n\in\mathbb{N},\ M_{n+1}=\frac{1}{2}\big(M_n+M_n^{-1}\big)$.
- On considère $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 1 \\ 4 & -4 & -1 \end{pmatrix}$. Etablir $(A I)^2 = 0$ puis étudiez la suite $A_n = \frac{1}{n}A^n$. Ex 19

CCINP PSI 2021 (convergence suite de polynà mes) *

Ex 20

Soient $a \in \mathbb{R}$ et, pour $P \in \mathbb{R}[X]$, $N_a(P) = |P(a)| + \int_0^1 |P'(t)| dt$.

- **1**) Montrez N_a norme sur $\mathbb{R}[X]$.
- **2**) Montrez que, si E est un evn muni d'une norme N, si $(x_n) \in E^{\mathbb{N}}$ converge vers $x \in E$, alors $N(x_n) \longrightarrow N(x)$.
- **3**) Pour quelles valeurs de a, la suite des $P_n = \left(\frac{x}{2}\right)^n$ est-elle convergente pour N_a ?
- **Ex 21** On pose $B_n = \begin{pmatrix} 1 & -\frac{1}{n} \\ \frac{1}{n} & 1 \end{pmatrix}^n = A_n^n$. Etudiez existence et valeur de $\lim B_n$
- Soit (a_n) une suite d'un evn E de dimension finie telle que la série $\sum \|a_n\|$ converge. Montrez que la série $\sum a_n$ converge (cad la suite des sommes partielles converge).

Mines-Ponts PSI 2022 (suites convergentes colinéaires) * * * *

Ex 23 Soit *E* un espace préhilbertien réel.

- **1**) Soient (u_n) une suite à valeurs dans E qui converge vers $u \in E$ et (λ_n) une suite réelle qui converge vers $\lambda \in \mathbb{R}$. Montrez que la suite $(\lambda_n u_n)$ converge vers λu .
- **2**) On suppose, dans cette question, que E est de dimension finie. Soient (u_n) , (v_n) deux suites à valeurs dans E qui convergent vers $u, v \in E$. On suppose que, pour tout $n \in \mathbb{N}$, u_n et v_n sont colinéaires. Montrez u et vcolinéaires.
- **3**) Le résultat de la question précédente demeure t-il vrai si l'on ne suppose plus E de dimension finie?

Centrale PSI 2022 (fermeture des classes de similitude) ★ ★ 🌊

Ex 24

- **1**) Soient $P \in \mathbb{C}[X]$, $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrez que, si A est semblable \tilde{A} B, P(A) est semblable \tilde{A}
- **2**) Soit $(B_k)_k$ une suite de matrices de $\mathcal{M}_n(\mathbb{C})$ qui converge vers $B \in \mathcal{M}_n(\mathbb{C})$. On suppose que, pour tout $k \in \mathbb{C}$ \mathbb{N}, B_k est semblable \tilde{A} une matrice $A \in \mathcal{M}_n(\mathbb{C})$ diagonalisable. Montrez A semblable \tilde{A} B.
- **3**) Est-ce encore vrai si A n'est pas diagonalisable?

CCINP PSI 2023-2021 🚱 (limite suite endomorphismes) 💪

Soit *E* un ev euclidien [2021 : evn] de dim. finie et soit $f \in \mathcal{L}(E)$ tq $\forall x \in E$, $||f(x)|| \le ||x||$.

- **1**) Soit $x \in \text{Ker}(f Id) \cap \text{Im}(f Id)$. Montrez il existe y tel que x = f(y) y.
- **2**) Déterminez $f^n(y)$ en fonction de x, y et n.
- **3**) En déduire $E = \text{Ker}(f Id) \oplus \text{Im}(f Id)$
- 4) [2021: Emy ne s'en rappelle plus. Il y a un résultat qui demande alors de démontrer que la suite de vecteurs $\frac{1}{n}(x+f(x)+\cdots+f^{n-1}(x))$ a pour limite, lorsque $n\to+\infty$, la projection de x sur Ker(f-Id) parallèlement à $\operatorname{Im}(f-Id)$. C'est peut-être cela??

Mines-Ponts PSI 2023 (suite de matrices) *
$$\nearrow$$

$$\mathbf{Ex 26} \qquad \text{Soit } A = \begin{pmatrix} p & q & r \\ q & r & p \\ r & p & q \end{pmatrix}. \text{ On suppose que la suite } (A^n) \text{ converge. Trouvez sa limite.}$$

Mines-ponts PSI 2013 (Limites de matrices) ★

Soit $M \in \mathcal{M}_n(\mathbb{C})$ triangulaire avec a pour unique valeur propre. Montrez l'équivalence de : (ii) $\sum_{k=0}^p M^k$ converge lorsque $p \to +\infty$. (iii) $\lim_{p \to +\infty} M^p = 0$.

(i)
$$|a| < 1$$
.

(ii)
$$\sum_{k=0}^{p} M^k$$
 converge lorsque $p \to +\infty$.

(iii)
$$\lim_{p\to+\infty}M^p=0$$

On pose $E = \mathbb{R}_n[X]$. Soit b_0, \dots, b_n n+1 réels distincts. Pour $P \in E$, on pose $N(P) = \sum_{k=0}^{n} |P(b_k)|$.

- **1**) & Etablir que N est une norme sur E.
- **2**) * Soit (P_m) une suite de polynômes de E tq $P_m = a_{mn}X^n + \cdots + a_{m1}X + a_{m0}$. Montrez l'équivalence de
- (i) La suite de polynômes (P_m) converge simplement sur \mathbb{R} .
- (ii) La suite de polynômes (P_m) converge uniformément sur tout segment de \mathbb{R} .
- (iii) $\forall 0 \le k \le n$, la suite réelle $(a_{mk})_{m \in \mathbb{N}}$ converge.

Mines-Ponts PSI 2019 (exponentielle de $\mathcal{M}_2(\mathbb{R})$ surjective) *

- **1**) Soit $M \in \mathcal{M}_2(\mathbb{C})$. Pour tout $n \in \mathbb{N}$, on pose $E_n = \sum_{k=0}^n \frac{M^k}{k!}$. Montrez que la suite (E_n) est convergente.
- **2**) Montrez que pour tout $A \in \mathcal{G}l_2(\mathbb{C})$, il existe $B \in \mathcal{M}_2(\mathbb{C})$ telle que $\sum_{k=0}^n \frac{B^k}{k!} \longrightarrow A$.

Mines-Ponts PSI 2018 (exponentielle de matrice 2 × 2) 🖼 Ӿ

Ex **30** Soit $A \in \mathcal{M}_2(\mathbb{C})$.

- **1**) Montrez que la série $\sum_{k} \frac{A^k}{k!}$ converge. On note $\exp(A)$ sa somme.
- **2**) Montrez que Sp(exp(A)) = exp(Sp(A)).
- **3**) Calculez $\exp(A)$ lorsque A est une matrice de rotation.
- **4**) L'application $A \longrightarrow \exp(A)$ est-elle injective? surjective?

Continuité et limites

& Soit *E* un espace euclidien. Montrez que $x \longrightarrow (x \mid y)$ est lipschitzienne (donc continue).

Ex 32 Soient f une application de \mathbb{R} dans \mathbb{R} .

- **1**) On suppose f lipschitzienne sur \mathbb{R} . Montrez $\exists A, B \ge 0 \ \forall x \in \mathbb{R} \ |f(x)| \le A|x| + B$
- **2**) On suppose ici f dérivable sur \mathbb{R} . Etablir f est lipschitzienne sur $\mathbb{R} \iff f'$ est bornée sur \mathbb{R} .

Centrale PSI 2021 (fonction matricielle sur $\mathcal{M}_n(\mathbb{R})$) *Soit $A: \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{R})$ de classe C^1 .

- **1**) Supposons, dans cette question, qu'il existe $S: \mathbb{R} \longrightarrow \mathcal{G}l_n(\mathbb{R})$ de classe C^1 telle que $S^{-1}(t)A(t)S(t) = A(0)$ pour tout $t \in \mathbb{R}$. Montrez il existe $B : \mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{R})$ continue telle que, pour tout $t \in \mathbb{R}, A'(t) = B(t)A(t) -$ A(t)B(t).
- **2**) Supposons, dans cette question, qu'il existe $B:\mathbb{R} \longrightarrow \mathcal{M}_n(\mathbb{R})$ continue telle que, pour tout $t \in \mathbb{R}, A'(t) =$ B(t)A(t) - A(t)B(t). Montrez, pour tout $t \in \mathbb{R}$, A(t) est semblable à A(0).

Ex 34 On munit $E = \mathscr{C}^0([0,1], \mathbb{R})$ de la norme de la convergence en moyenne, cad $N(f) = \int_0^1 |f|$.

- **1**) Etablir que la forme linéaire $\phi: E \to \mathbb{R}$ qui à f associe f(0) n'est pas continue. (*Indication*: On pourra considérer la suite de fonctions f_n définie par f_n est affine par morceaux joignant les points (0,1) (1/n,0) (1,0)
- 2) En munissant E de la norme infinie usuelle (norme de la convergence uniforme), montrez, à contrario, que l'application linéaire ϕ est continue (*indication*: on pourra montrer lipschitzienne)

Etudiez l'existence de la limite en (0,0):

$$k(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 $f(x,y) = \frac{x^2y^2}{x^4 + y^2}$ $h(x,y) = \frac{\sinh x - \sinh y}{x - y}$

Soi f une application linéaire d'un evn $(E, \|.\|_E)$ vers un evn $(F, \|.\|_F)$. Montrez l'équivalence de : (i) f est continue (ii) f est continue en 0. (iii) f est lipschitzienne. (iv) il existe k > 0 tq $\forall x \in E$, $||u(x)||_F \le$ (v) f est bornée sur la boule-unité.

Mines-Telecom PSI 2022 (continuité fonctions f(x, y))

Etudiez la continuité en (0,0) de chacune des fonctions suivantes, toutes supposées nulles en (0,0) et définies pour tout $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ par : $f(x,y) = \frac{x^3y}{x^2 + y^2}$ $g(x,y) = \frac{xy}{x^2 + y^2}$ $h(x,y) = \frac{x^3y}{x^2 + y^2 + xy}$

Topologie

Ouvert : $O \subset E$ evn est un **ouvert** ssi l'une des propriétés équivalentes suivantes est vérifiée :

- (i) Tout élément de O est intérieur à O.
- (ii) $\forall x \in O$, $\exists r > 0 \text{ tq } B(x, r) \subset O$.

Fermé: $F \subset E$ evn est un **fermé** ssi l'une des propriétés équivalentes suivantes est vérifiée :

- Le complémentaire de F (dans E) est un ouvert de E
- Caractérisation séquentielle: pour toute suite d'éléments (f_n) de F convergente (vers un x), alors nécessai-
- Tout élément adhérent à F est dans F.

Convexité: $C \subset E$ est *convexe* ssi $\forall x, y \in E$, tout le segment $[x, y] = \{tx + (1 - t)y, t \in [0, 1]\} \subset C$

Densité: $A \subset E$ evn est dite *dense dans* E ssi l'une des propriétés équivalentes suivantes est vérifiée :

- L'adhérence de A contient $E: \overline{A} \supset E$.
- $\forall a \in A, \forall r > 0$, il existe $x \in E$ to $x \in B(a, r)$ cad ||x a|| < r.
- Caractérisation séquentielle: pour tout $x \in E$, il existe une suite d'éléments de A qui converge vers x.

Soient f, g continues de E dans F, evns de dim. finies. Montrez $\{x \in E, f(x) = g(x)\}$ est un fermé de Ex 38 E.

Soit $A = [0,1[\cup]1,2[\cup ([3,4] \cap \mathbb{Q}) \cup \{5\}.$ Ex 39

- **1**) Montrez que ces 7 parties sont 2 à 2 distinctes : A, \mathring{A} , $\overline{\mathring{A}}$, $\overline{\mathring{A}}$
- **2**) Par contre, montrez que $\stackrel{\stackrel{\leftarrow}{a}}{A}$ et $\stackrel{\stackrel{\leftarrow}{a}}{A}$ sont égales à 2 des précédentes.

Ex 40 Montrez que $O =]-1,1[\times \mathbb{R} \cup \{(x,y) \in \mathbb{R}^2, |1 < |x| < y^2 \}$ est un ouvert de \mathbb{R}^2 .

Centrale PC 2018 (fermeture matrice 2×2 de valeurs propres de module 1) # # Montrez que l'ensemble des matrices de $\mathcal{M}_2(\mathbb{C})$ dont les valeurs propres sont de module 1 est un fermé

5

- **Ex 42** Soit A une partie non vide et convexe d'un evn E. Montrez que \mathring{A} et \overline{A} sont convexes.
- Soit *E* un evn de dimension finie et *F* un sous-ev (strict) de *E*. Montrez $\mathring{F} = \emptyset$ et $\overline{F} = F$ Ex 43

Mines-Ponts PSI 2022 (adhérence d'un hyperplan) *

Ex 44 Soient E un evn et F un sev deE.

- $\mathbf{1}$) Montrez que l'adhérence de F est un sev de E
- **2**) Que dire de l'adhérence de *F* lorsque *F* est un hyperplan? On commencera par le cas *E* de dimension finie.
- **3**) [Pas dans l'oral: Dans $E = \mathcal{C}^0([0,1], \mathbb{R})$, on considère l'hyperplan H des fonctions $f \in E$ vérifiant f(0) = 0. En considérant les normes usuelles $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$, établir que H est fermé pour l'une et dense pour l'autre.]
- **Ex 45** \bigstar On va montrer que les seuls ouverts *et* fermés de E sont \emptyset et E. Soit $U \subset E \neq \emptyset$ ouvert et fermé et $x \in U$. On prend $y \in E$ et on pose $A = \{t \in [0,1], (1-t)x + ty \in U\}$
- **1**) Montrez que sup A existe.
- **2**) Montrez par l'absurde $\sup A = 1$ (on utilisera U ouvert et fermé).
- **3**) Conclure
- **Ex 46** On se place dans $E = M_n(\mathbb{C})$. Montrez l'ens. des matrices diagonalisables est dense dans E (cad $\overline{D} = E$).

Indication : utilisez toute matrice est trigonalisable dans \mathbb{C} .

Ex 47 Soit *E* un evn et $F \subset E$. Montrez *F* est un fermé d'intérieur vide ssi $E \setminus F$ est un ouvert dense.

Mines-Ponts PSI 2019-2018 (ouvert union infinie de fermés) ★

Ex 48 Soit *E* un evn de dim. finie et *A* une partie ouverte de *E*. Montrez que $U = \bigcup_{a \in A} \overline{B(a,1)}$ est un ouvert.

Ex 49

- **1**) Montrez que toute matrice de $\mathcal{M}_n(\mathbb{C})$ est limite de matrices inversibles.
- **2**) Soit A inversible et B quelconque. Montrez AB et BA ont même polynôme caractéristique. En déduire que cela reste vrai pour A quelconque.
- **Ex 50** ** Montrez que l'ensemble des matrices de $M_n(\mathbb{K})$ de rang $\geq k$ est un ouvert. En déduire que si une suite de matrices (A_n) converge vers A, alors pour n assez grand $\operatorname{rg} A_n \geq \operatorname{rg} A$.

Centrale PSI 2013 (convexité)

Ex 51 Soit A une partie non vide d'un espacez vectoriel normé E de dimension finie.

Pour
$$x \in E$$
, on pose $d(x, A) = \inf_{a \in A} ||x - a||$. Soient $R > 0$ et $A(R) = \{x \in E, d(x, A) \le R\}$.

Montrez que si A est convexe, alors A(R) est convexe et fermé.

X PSI 2023 (fermeture matrices trigonalisables) *

Ex 52

- **1**) Soit $P \in \mathbb{R}_n[X]$ unitaire avec $n \ge 2$. Montrez que P est scindé dans $\mathbb{R}_n[X]$ ssi $\forall z \in \mathbb{C}$, $|P(z)| \ge |\operatorname{Im} z|^{\deg P}$
- **2**) Montrez que l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{R})$ est un fermé.
- **Ex 53** Soit (E,N) un evn et $A \subset E$. On définit $d(x,A) = \inf_{a \in A} ||x-a||$.
- **1**) Montrez que $x \to d(x,A)$ est continue. (*montrez qu'elle est lipschitzienne*)
- **2**) On suppose A fermé. Montrez $d(x, A) = 0 \iff x \in A$. Et si A n'est pas fermé?
- **Ex 54** ** Soient A et B deux sous-ensembles d'un evn E de dimension finie. Etudiez les implications : A ouvert ou B ouvert $\Longrightarrow A+B$ ouvert A fermé et B fermé A fermé A compact et B compact A compact